

Electrical Engineering Technical Division

Simpler Industrial and Business Process Redesign.

By

Mike Sondalini

Lifetime Reliability Solutions

Biography

Qualifications:

Tradesman Fitter Machinist

Professional Mechanical Engineer (1st Class Honours)

Project Engineer

Maintenance Engineer

Master Business Administration

Maintenance Manager

Engineering and Business Work History:

Nova Machinery – Manufacturer Press Brakes & Guillotines

Swan Brewery – Beverage

Riverton Engineering – Sheet Metal Fabrication

Coogee Chemicals – Mining & Agricultural Chemicals Manufacture

Lifetime Reliability Solutions – Lean, Life Cycle Asset Management, ISO 9001 Quality

Consulting

Three universal problems in business...

3. Wide and out-of-control process variation

 Process redesign means finding highly effective solutions that address them.

Need to Achieve Process Control and Capability

In control and capable

In control but not capable

Out of control

The Concept of a Quality Loss Function

Taguchi 'Loss to Society' Function

Concept First Developed in 1960

Bolt Tensioning Loss Function

Bolt Tensioning

The 'Loss to Society' of Poorly Kept Machines

Maintenance Planning Loss Function

Maintenance Planning Cost Loss Function

Cost of Maintenance Planning

Distribution of Work Quality Performance

Combining Work Quality and Loss Function

Work Quality that Minimises Loss and Waste

Work Quality that Optimises Reliability

Maintenance Work Quality

Work Quality that Makes Money

Maintenance Work Quality

Where the Money is in 'Quality'

Process Redesign to Improve Efficiency

"Doing things right."

Process Redesign to Improve Effectiveness

"Doing right things." Frequency of Outcome Upper Lower Change Change **Current Least Cost Excessive Cost** Cost

Changing Process Variation and Outcomes

Distribution Curve of Variation in a Process

•Uncoil a paper clip and bend it as instructed by the Presenter. Carefully count the number of cycles until it breaks.

•Develop a distribution of the count of the number of cycles to failure.

Standardised Work Sets Process Outcomes

We all need clear Targets that we can SEE.

How do You know You have got full marks?

What do we mean by....

Quality, Precision, Repeatability, Variability

Repeatability is low in this process

Reliability Creating 3T Error Proof Procedures

Build Mistake Proofing into SOPs

- Set a target for each task.
- Specify the acceptable tolerance.
- •Do a <u>test</u> to prove accuracy.

3Ts of Failure Prevention -. Target . Tolerance , Test

3T's: target for quality workmanship

As MAGNIFICENT as it needs to be

As BAD as allowed

Each person do Good / Better / Best for a clock

Redesigning Processes for Intended Outcomes

Promote Attendance at EETD Sessions

PURPOSE: Provide well attended and successful technical sessions in a selected topic.

Process Steps	Identify Training Topic	Identify Likely Customers	Select Training Venue	Select the Trainer	Create an Opportunity	Captivate with Benefits	Attendee Inquiry	Attendee Registration	Course Payment	Conduct the Training Course
Effect of Total Failure	8	8	⊜	8	⊜	8	3	⊕	⊜	8
TARGET	High interest topic to many people	People are excited by the topic								
TOLERANCE	General Interest topic to many people	People want to know more about the topic								
TEST	Survey results confirm interest	People get value by attending								
RISK ASSESSMENT Risk - Consequence x (Opportunity x [1-chance of Success at	Do not know what Interests people	People are too busy to attend	Customers cannot get to venue							
	Small number of people interested	Not enough people on mailing list								
	Topic is out-of- date	Go to the wrong people								
each Opportunity])										
	Survey topics with 20 likely Customers									
RISK CONTROLS	Survey Indicates high Interest									
	Survey Indicates high relevance									
Chance of Success Range	>80%									

Lean and Six Sigma fails Business when they are used for point solutions. For lasting success you need systemic solutions.

The aim of using Lean and Six Sigma practices

Lean

- –Used to improve Effectiveness : are we doing the right things!
 - 7 Wastes
 - The 'Hidden Factory'
 - Lean Thinking/Practices
 - Lean Tools
 - Value Stream Mapping
 - 5S: Workplace Management
 - Kaizen

Six Sigma

- –Used to improve Efficiency: are we doing things right!
 - •6σ accuracy
 - Sigma Levels
 - •The Variation Problem
 - Six Sigma Tools
 - DMAIC Process
 - 7 QC Analysis Methods
 - Visual Management

The Lean Concepts

- Demand = Production = Supply
- Continuous Flow
- 3. Use Pull Flow
- Maximise the Value Stream
- Demand to Pacesetter
- Prevention not Rework
- 7. Apply Statistical Process Control (SPC)
- 8. Use Single Minute Exchanger of Dies (SMED)
- 9. Minimise Variation (Supply Chain Demand Amplification)
- 10. First In First Out (FIFO)
- 11. Minimise Inventory
- 12. Link and Match Processes
- 13. Use 5S Methodology
- Load Levelling to Capacity
- 15. Even Mix to Pacesetter
- Equal Batches Every Time (EBIT)
- 17. Shorten the Financial Reporting Cycle
- 18. Team Up (Autonomous Work Teams)
- 19. Minimise Waste
- 20. Apply to the Entire Supply Chain
- 21. Remove need to Sequence Products
- 22. Optimise Supply (JIT)
- 23. Optimise Customer Response
- 24. Measure at the Source
- 25. Innovate Continuously
- 26. TPM (Operator Driven Reliability)

Lean for Process Redesign

Lifetime Reliability • Solutions

Deming's 14 Points for a Quality Culture

- Create Consistency of Purpose
- Remove Variation
- 3. Build-In Quality at the Source
- 4. Minimise Total Life Cycle Cost
- 5. Continuous Improvement
- 6. Create Learning In the Workplace
- Servant Leadership
- 8. Drive-Out Fear from the Workplace
- Remove Departmental Barriers (Team-Up)
- 10. Eliminate Slogans and Work Targets
- 11. Eliminate Imposed Job Quotas and Goals
- 12. Generate Pride of Craftsmanship
- Continuous Self-Improvement through Training
- 14. Take Action to Improve Every Process

14 Points Process Redesign

A Quality Variable

All Our Businesses are Processes in Series

$$R_{business} = R_{process1} \times R_{process2} \times R_{process3} \times ... \times R_{process'n'}$$

Reliability 'R' is the chance of success.

How to Reduce the Chance of Failure

Chance of Failure = 1 - Chance of Success

Chance of Failure = 1 - Reliability

Risk = Consequence \$ x Chance /yr

Risk = Consequence \$x\$ [Freq of Opportunity /yr x Chance of Failure at Each Opportunity]

Risk = Consequence $$x [Freq of Opportunity / yr x {1 - Reliability}]$

Excellent Lubricant Cleanliness

Correct Fastener Torque

Proper Fits and Tolerance

No Unbalance

Here are some opportunities...

The full Risk Equation is more Meaningful for examining Risk of Process Failure

[← Failure Frequency

Risk=[Consequence] x [Opportunity to Fail x Chance of Failure]

Risk=[Consequence] x [Opportunity to Fail x (1-Reliability)]

Risk=[Consequence] x [Opportunity to Fail x (Unreliability)]

1-reliability = unreliability = $P(T \le t)$ at every opportunity for failure = failures/opportunity opportunity = opportunities/time consequence = cost/failure

- Risk = cost/time
- Reliability = Chance of success

That means that maximizing reliability is not the best business objective. From a business standpoint we want to minimize risk.

Business Risk is the Sum of Process Risks

$$Risk_{process1} + Risk_{process2} + ... + Risk_{process'n'} = Risk_{business}$$

We have three ways of minimising Risk

Risk= $[\leftarrow Reduce\ Failure\ Frequency\ \rightarrow]$

[Reduce consequence] x [opportunity to fail x (unreliability)]

[CONSEQUENCE REDUCTION] [CHANCE REDUCTION]

- 1. Increase reliability = Decrease unreliability = Fewer failures/opportunity
- 2. Reduce opportunity to fail = Fewer opportunities/time
- 3. Reduce consequence of failure = Less cost/failure

Reducing Businesses Process Risk

$$Risk_{process1} + Risk_{process2} + ... + Risk_{process'n'} = Risk_{business}$$

Risk Reduction – Reduce Chance, Opportunity or Consequence?

Risk (\$/yr) = Consequence of Failure x Frequency of Failure

Risk = Consequence of Failure x [Opportunity to Fail x (1 - Chance of Failure)]

Consequence of Failure Reduction Strategies

Strategies presume failure event occurs and act to minimise consequent losses

- Preventive Maintenance
- Shutdown Maintenance
- Predictive Maintenance
- Non-Destructive Testing
 - Vibration Analysis
 - Oil Analysis
 - Thermography
 - Motor Current Analysis
- Total Productive Maintenance (TPM)
- Prognostic Analysis
- Criticality Analysis
- Emergency Management
- Computerised Maint Mgmt Syst(CMMS)
- Key Performance Indicators (KPI)
- Risk Based Inspection (RBI)
- Operator Watch-keeping
- Value Contribution Mapping (Process step activity based costing)
- Logistics, stores and warehouses
- Defect and Failure True Cost (DAFTC)
- Maintenance Engineering

Lifecume remanding some

Done to reduce the cost of failure

Opportunity to Fail Reduction Strategies

Strategies prevent opportunities for a failure event arising

- Engineering / Maintenance Standards
- Statistical Process Control
- Degradation Management
- Reliability Growth Cause Analysis (RGCA)
- Lubrication Management
- Hazard and Operability Study (HAZOP)
- Hazard Identification (HAZID)
- Failure Design-out Maintenance
- Failure Mode Effects Analysis (FMEA)
- Hazard and Operability Study (HAZOP)
- Root Cause Failure Analysis (RCFA)
- Precision Maintenance
- Training and Up-skilling
- Quality Management Systems
- Planning and Scheduling
- Continuous Improvement
- Supply Chain Management
- Accuracy Controlled SOPs (ACE 3T)
- Design, Operation, Cost Total Optimisation Review (DOCTOR)
- Reliability Engineering

Chance to Fail Reduction Strategies

Strategies reduce probability of failure initiation if failure opportunity present

- Training and Up-skilling
- Oversize / De-rate Equipment
- Hardier Materials of Construction
- Personal Protective Equipment (PPE)
- Segregation / Separation
- Controlled Atmosphere Environment e.g. +ve / -ve pressures, explosion proof atmos

 \circ

Done to reduce the frequency of failure

The Cross-Hair Game:

Observing Business Process Outcomes

Cross-hairs and 10 mm diameter circle

How do you hit the bulls-eye every time?

'Cross Hair' Production Process Distribution

Where does Failure Start in a Process?

Problems start with 'chance' variation... for example

How Chance Tricks Us so We think 'Feel' is Fine

Risk from Fastening Process Choice Variation

Risk=[Consequence³] x [Frequency]

Risk=[Consequence] x [Opportunity to Fail² x Chance of Failure at Opportunity]

Risk=[Consequence] x [Opportunity to Fail x (1-Reliability)]

Risk from Fastener Tensioning Method Process Variation

No	Tensioning Method	Distribution	Reliability	Unreliability (Area outside ± 10% of 'Feel')	At Risk Fasteners per 100 Bolt/Nut Sets ²	Opportunity of Error		
				,	$R = C \times [O \times (1-R)]$			
1	Operator Feel	± 35%	0.65	0.35	35	 From outer distribution of tensioning method choice Other events not related to tensioning method choice 		
2	Torque Wrench	± 25%	0.8	0.2	20	 From outer distribution of tensioning method choice Other events not related to tensioning method choice 		
3	Turn of Nut	± 15%	0.95	0.05	5	 From outliers of tensioning method choice Other events not related to tensioning method choice 		
4	Loading Indicating Washer	± 10%	1 ¹	0	0	 From extreme outliers of tensioning method choice Other events not related to tensioning method choice 		
5	Fastener Elongation	± 5%	1 ¹	0	0	Other events not related to tensioning method choice		
6	Strain Gauges	± 1%	1 ¹	0	0	Other events not related to tensioning method choice		

Note 1: Based on research of tension method performance, at around ± 10% of required fastener tension there is substantial reduction in connection failures.

Note 2: Each bolted fastener is an opportunity to be incorrectly tensioned

Note 3: Consequence is presumed to remain the same for each event (mostly not true, which is why determining Criticality first is vital for good maintenance decisions.

Lean and Six Sigma fails Business if they do not change the Business System.

THANK YOU.

Mike Sondalini

Lifetime Reliability Solutions

