Maximising Maintenance Work Quality and Equipment Reliability in Shutdowns

Shutdowns and Turnarounds 2011 Conference

Ву

Mike Sondalini

Lifetime Reliability Solutions

www.lifetime-reliability.com

Presentation Coverage

 The connection between maintenance work quality and the time to the next breakdown,

- Using the Taguchi Loss Function to explain why work quality is important,
- Effectively specifying and measuring maintenance work quality requirements for shutdowns

Shell's Shutdown Success Indicators

Some 'best' numbers in Refining Source: Alberto Pasqualini refinery – Brazil

- Crude unit run 68 months (5-3/4 yrs)
- Crude unit "pioneer" run 90 months (7-3/4 yrs)
- Catalytic Cracker run 46 months (3-3/4 yrs)

Thanks to Jim Wardhaugh, UK Consultant (30 years with Shell and Centre of Excellence Leader)

Influence on Profitability

The Concept of a Quality Loss Function

Distribution of Work Quality Performance

Combining Work Quality and Loss Function

Work Quality that Minimises Loss and Waste

Work Quality that Optimises Reliability

Work Quality that Makes Money

Where the Money Comes from by doing Quality Work

Where Work Quality Problems Start

Human Error Rate Table

	Error rate (per task)				Error rate (per task)		
	Read/ reason	Physical operation	Everyday yardstick		Read/ reason	Physical operation	Everyday yardstick
Simplest possible task Fail to respond to annunciator Overfill bath	0.0001		0.00001	Read analogue indicator wrongly Read 10-digit number wrongly Leave light on	0.005 0.006		0.003
Fail to isolate supply (electrical work) Read single alphanumeric wrongly Read 5-letter word with good resolution wrongly Select wrong switch (with mimic diagram) Fail to notice major cross-roads	0.0002 0.0003	0.0001	0.0005	Routine task with care needed Mate a connector wrongly Fail to reset valve after some related task Record information or read graph wrongly Let milk boil over	0.01	0.01 0.01	0.01
Routine simple task Read a checklist or digital display wrongly Set switch (multiposition) wrongly Calibrate dial by potentiometer wrongly Check for wrong indicator in an array Wrongly carry out visual inspection for	0.001	0.001 0.002		Type or punch character wrongly Do simple arithmetic wrongly Wrong selection – vending machine Wrongly replace a detailed part Do simple algebra wrongly Read 5-letter word with poor resolution wrongly Put 10 digits into calculator wrongly Dial 10 digits wrongly	0.01-0.03 0.02 0.03 0.05 0.06	0.02	0.02
a defined criterion (e.g. leak) Fail to correctly replace PCB Select wrong switch among similar	0.003 0.004 0.005		Complicated non-routine task Fail to notice adverse indicator when reaching for wrong switch or item Fail to recognize incorrect status in roving inspection New workshift – fail to check hardware, unless	0.1			
Source: Smith, David J., 'Reliability, Maintainabil Seventh Edition, Elsevier – Butterworth Heinem	•	, Appendix 6,		specified General (high stress) Fail to notice wrong position of valves Fail to act correctly after 1 min in emergency situation	0.1 0.25 0.5		

The Table confirms that 'human element' error is real and <u>unavoidable</u>. We do not perform well when tasks are structured in ways that require great care and we perform especially badly under complicated, non-routine conditions. Add stress into that that mix and you get disaster.

Maintenance Error Rates

	Ern	or rate (per	task)
	Read/ reason	Physical operation	Everyday yardstick
Routine task with care needed		0.01	
Mate a connector wrongly		0.01	
Fail to reset valve after some related task	0.04	10.0	
Record information or read graph wrongly	0.01		0.01
Let milk boil over			0.01
Type or punch character wrongly		0.01	
Do simple arithmetic wrongly	0.01-0.03	Г	٨
Wrong selection - vending machine		5000000	
Wrongly replace a detailed part		0.02	1 Serious Failure
Do simple algebra wrongly	0.02		Jen Sunane
Read 5-letter word with poor resolution wrongly	0.03		
Put 10 digits into calculator wrongly	0.05		/ 10 Losses
Dial 10 digits wrongly	0.06		
Complicated non-routine task			6500 Repairs (a failure)
Fail to notice adverse indicator when reaching	200		
for wrong switch or item	0.1		20,000 Defect Modes
Fail to recognize incorrect status in roving			20,000
inspection	0.1		
New workshift - fail to check hardware, unless			The Failure Pyramid
specified	0.1		Not every error leads to failure
General (high stress)	0.25	L	ivol every error ledds to juildre
Fail to notice wrong position of valves	0.5		Source: Ledet, Winston, The Manufacturing Game
Fail to act correctly after 1 min in emergency			

Lifetime Relia

In failure rate terms the incident rate in a plant is likely to be in the range of 20×10^{-6} per h (general human error) to 1×10^{-6} per h (safety-related incident).

Probability of Work being Done Right

A Maintenance Job Plan

JOB PLAN TO INSTALL NEW BEARINGS IN CONVEYOR PULLEY PLUMMER BLOCKS

- 1. Prepare for Job in Dirt-Free Work Area
- 2.Safe Isolation and Handover
- 3. Check Parts and Materials are Correct
- 4.Access Plummer Blocks and Bearings
- 5. Check Shaft Condition and Tolerance
- **6.Measure Bearing Internal Clearance**
- 7. Measure Plummer Base Plate Accuracy
- 8.Locate Bearings on Shaft
- 9. Mount Bearings on Shaft
- 10. Position Plummer Blocks and Place Pulley
- 11. Complete Plummer Block and Seals Assembly
- **12.Align Plummer Blocks**
- **13.Lubricate Bearing and Seals**
- 14. Align Plummer Blocks and Bolt Down
- 15.Commission and Test
- 16.Clean-up and Hand Back

Job Plan as a Process Flow Diagram

Failed Machine >>

"One wrong; all wrong."

>> Reliable Machine

Chance of Success in a 16 Task Job Plan

But this is a Job Plan, Not a Job Procedure

This Job Procedure has 75 Non-Routine and Complicated Activities

$$\underline{R}_{job} = \underline{R}_1 \times \underline{R}_2 \times \dots \underline{R}_{75}$$

Lifetime Reliability Solutions

No Job Procedure... Human Error Dominates

- 1. Prepare for Job in Dirt-Free Work Area
- 2. Safe Isolation and Handover
- 3. Check Parts and Materials are Correct
- 4. Access Plummer Block and Bearings
- 5. Check Shaft Condition and Tolerance
- 6. Measure Bearing Internal Clearance
- 7. Measure Plummer Base Plate Accuracy
- 8. Locate Bearings on Shaft
- 9. Mount Bearings on Shaft
- 10. Position Plummer Blocks and Place Pulley
- 11. Complete Plummer Block and Seals Assembly
- 12. Align Plummer Blocks
- 13. Lubricate Bearing and Seals
- 14. Locate Plummer Blocks and Bolt Down
- 15. Commission and Test
- 16. Clean-up and Hand Back

The 'Game' of Business

Carpenter's Creed: measure twice, cut once

This is a 'mistake proofing' method that greatly reduces the chance of an error being made and left behind in a job as a defect that will later cause failure.

Answers are in the Human Error Rate Table

	Read/ reason	Error rate (per tas Physical operation	k) Everyda yardstick		Ern Read/ reason	or rate (per task Physical operation	Everyday yardstick
Simplest possible task Fail to respond to annunciator Overfill bath Fail to isolate supply (electrical work)	0.0001	~5 sigma	0.00001	Read analogue indicator wrongly Read 10-digit number wrongly Leave light on Routine task with care needed	0.005 0.006 ~4	sigma	0.003
Read single alphanumeric wrongly Read 5-letter word with good resolution wrongly Select wrong switch (with mimic diagram) Fail to notice major cross-roads	0.0002 0.0003	0.0001	0.0005	Mate a connector wrongly Fail to reset valve after some related task Record information or read graph wrongly Let milk boil over	0.01	0.01	0.01
Routine simple task Read a checklist or digital display wrongly Set switch (multiposition) wrongly Calibrate dial by potentiometer wrongly Check for wrong indicator in an array Wrongly carry out visual inspection for a defined criterion (e.g. leak)	0.001	~4.5 sigm		Type or punch character wrongly Do simple arithmetic wrongly Wrong selection – vending machine Wrongly replace a detailed part Do simple algebra wrongly Read 5-letter word with poor resolution wrongly Put 10 digits into calculator wrongly Dial 10 digits wrongly	0.01-0.03 0.02 0.03 0.05 0.06	0.01	0.02
Fail to correctly replace PCB Select wrong switch among similar	0.003	0.004 0.005		Complicated non-routine task Fail to notice adverse indicator when reaching for wrong switch or item Fail to recognize incorrect status in roving inspection New workshift – fail to check hardware, unless	0.1	3 sign	na
Source: Smith, David J., 'Reliability, Maintainabili 6, Seventh Edition, Elsevier – Butterworth Heine	-	k', Appendix		specified General (high stress) Fail to notice wrong position of valves Fail to act correctly after I min in emergency situation	0.1 0.25 0.5		

In failure rate terms the incident rate in a plant is likely to be in the range of 20×10^{-6} per h (general human error) to 1×10^{-6} per h (safety-related incident).

What is Wrong with this Job Plan?

JOB PLAN TO INSTALL NEW BEARINGS IN CONVEYOR PULLEY PLUMMER BLOCKS

- 1. Prepare for Job in Dirt-Free Work Area
- 2.Safe Isolation and Handover
- 3. Check Parts and Materials are Correct
- 4. Access Plummer Blocks and Bearings
- 5. Check Shaft Condition and Tolerance
- **6.Measure Bearing Internal Clearance**
- 7. Measure Plummer Base Plate Accuracy
- 8.Locate Bearings on Shaft
- 9. Mount Bearings on Shaft
- 10. Position Plummer Blocks and Place Pulley
- 11. Complete Plummer Block and Seals Assembly
- **12.**Align Plummer Blocks
- **13.Lubricate Bearing and Seals**
- 14. Align Plummer Blocks and Bolt Down
- 15. Commission and Test
- 16.Clean-up and Hand Back

What is Wrong with this Inspection?

Task	List # Various	
Visu	al Inspection of Pump	•Roving Inspection 1:10 errors
Pump	Inspected:	Defined Criteria Inspection 3:1000
Visu	al Inspection Only	
1)	Check pump base - corrosion / sec	curity.
2)	Check pump guards - cracked / sec	ured / adequate.
3)	Check associated pipework for sup	port / leaks.
4)	Check associated valves have hand condition.	les and are in safe
5)	Check suction expansion joint for cracking.	external wear and
6)	Check condition of motor and asso	ciated cables.
7)	Check condition of stop / start s	
	Raise Subsequent Notification Mair	
	for any repairs requi	None of these task will prevent the pur
		and piping from failing. These tasks fin

Where Shutdown Work Quality Needs to Be!

Reliability Creating 3T Error Proof Procedures

Build Mistake Proofing into your SOPs

- •Set a Target for each task.
- •Specify the acceptable Tolerance.
- •Do a Test to prove accuracy.

Develop & Use Accuracy Controlled Error Proof Procedures with Quality Standards to Meet

One Layout for an Accuracy Controlled 3T – Target, Tolerance, Test – Failure Prevention Procedure

How 3T's Guide Workmanship Quality

As MAGNIFICENT as it needs to be

As BAD as allowed

How close to Right is close enough?

3T's Centre Work Quality at the Optimum

Remove the Variability in How a Job is Done by Using Error Proof Techniques

By setting quality controls into a job you ensure the actions that create reliability are done thereby greatly reducing the chance that a mistake will be made.

In the end... reliability is a quality control issue because the standards you meet create the reliability you get

Do Quality Work and You are Always Sure to make Money

