Operational Excellence the Plant Wellness Way 3-Day Training Course

Bring world-class equipment performance to your operation

The training content coverage in the 'Operational Excellence for Outstanding Plant Reliability' course is thorough and includes the work processes and the business systems needed to coordinate and achieve maximum production plant and equipment performance. Find out how to institute the vital practices and systems to achieve maximum life-cycle profits from your operating plant and equipment. Be guided with the right concepts from their implications through to their masterful implementation.

Day 1 – Reliability Foundations	Day 2 – Operational Excellence Processes	Day 3 – Reliability Creation
 Physics of Failure Component Distress Deformation and Degradation Physics of Failure (PoF) Failure Rates 	Operating Risk Identification Process Mapping Defect Identification Downtime Costing 	 Business Risk Reduction Design Operational Excellence into Operating Processes Selecting Useful Quality Controls Document the Correct Ways
Reliability Definitions Modelling Distributions Process Variation 	Operating Risk Selection Risk Rating Risk Response Rating Equipment Criticality 	 Stress to Process Model Machine Health Creation Process Supporting Business Processes Introducing the Right methods
Risk The True Risk Equation Risk Modelling Operating Risk Reduction 	 Risk Control Planning Risk Strategy Selection Risk Cost Calculator Confirming Risk Reduction 	Life Cycle Risk Reduction Key Life Cycle Decisions Totally Optimised Risk Gauge Likely Profit Improvement
Cost of Failure Defect and Failure Total Cost Reactive Breakdown Proactive Reliability 	Risk Control Introduction Improving Process Design Work Quality Assurance Organisation Structure 	 Operational Risk Reduction Failure Factors Analysis Risk Reduction Strategy Selection Economic Maintenance Selection
Series Arrangements Series Arrangements Parallel Arrangements Properties of Series Systems 	Operating Risk Monitoring Operation Performance Measure Selecting KPIs View Process Stability 	Machinery Risk Reduction Reliability Growth Cause Analysis Reliability Maintenance Standards
Human Error • Human Error • Human Factors • Controlling Human Error	 Risk Continual Elimination Failure Prevention Cycle Root cause Analysis Precision Maintenance 	Making Changes Change Management Map the Improvement Journey People Working Together
Life Cycle Maximising ROI Profit Optimisation Least Operating Costs 		
Reliability Improvement Component Reliability Standardisation Systemisation 		

With the right systems, the right methods and the right practices of Plant Wellness in your operation you can get these Operational Excellence results:

- 100%-dependable full production,
- in-full-on-time delivery,
- continual first-pass quality product,
- sustained maximum throughput,
- no penalty claims,
- no breakdowns,
- non-stop highest plant availability,
- dramatically extended time between failures,
- free extra production from your 'hidden factory'
- make plant and equipment run consistently at highest availability
- produce at full capacity with 100% first-pass-quality
- make the most operating profit and need to be sure to get there
- reduce their production costs and wastes
- get the utmost throughput from existing plant without new capital
- make higher productivity inevitable.

Lifetime Reliability • Solutions

Plant Wellness Way to Operational Excellence Training Course Workbook and Reference Materials

CONTENTS

Extracts on the Causes of Equipment Failure	2
Activity 1 – Simple Reliability Block Calculations	3
Case Study 1 – Shaft Quality Control for Bearing Reliability	4
Activity - Put 3T Quality Control in Maintenance Procedures	6
Description of Process 1 – Risk Identification	11
Activity 2 – Costing Failure Consequences	12
Activity 3 – Constructing an Equipment Process Map	18
ACE 3T Standard Operating Procedure Example	21
Activity 3 continued – Constructing a Job Process Map	24
Description of Process 2 – Determine the Risk Rating	25
<u>Activity 4 – Risk Rating</u>	26
<u>Activity 5 – Equipment Criticality</u>	27
Risk Identification and Analysis - Template 1	
Risk Treatment Schedule and Action Plan - Template 2	29
Risk Assessment Matrix	
Description of Process 3 – Selecting Risk Control Strategy	32
Activity 6 – FMEA System Level	
Activity 6 continued – FMEA Component Level	35
Activity 7 – Operating and Maintenance Strategy Selection	
Activity 7 continued – Determine Remaining Risk	
Description of Process 4 – Introducing Risk Controls	41
Activity 8 – Write an ACE 3T Procedure	42
Description of Process 5 – Risk Monitoring and Measuring	45
Activity 9 - Case Study of Maintenance History Analysis and Weibull Plot	46
Description of Process 6 – Continual Improvement	48
Activity 10 – Reliability Growth Cause Analysis	49
5 Whys Method of Root Cause Analysis	54
Activity 11 – 5 Why Analysis of Compressor Failure	56
Activity 12 – Plan of Action	61
Example 1 of ACE 3T Standard Operating Procedure (Flange)	63
Example 2 of ACE 3T Procedure (Conveyor Pulley)	66