The Processes and People of Reliability Improvement

BHP Billiton Reliability Forum 2010
Presentation

By

Mike Sondalini

www.lifetime-reliability.com

The Odds are Against Doing it Right!

Only one way to disassemble

40,000+ ways to incorrectly reassemble!

Your machines are components in series

Electric motor drive end bearing

Series arrangements are at high risk

Motor parts shown as a series

"Any one part fails;

This is why clean lubricant is so important:

It gets between all the parts and becomes a series component many time over!

Calculating series reliability

Reliability is the **chance** that an item will last long enough to do its duty

$$R_{\text{series}} = R_1 \times R_2 \times R_3 \times ... R_n$$

$$R_{\text{series}} = 0.99 \times 0.99 = (0.99)^9 = 0.91 \text{ (or } 91\%)$$

$$R_{\text{series}} = 0.99 \times 0.99 \times 0.99 \times 0.99 \times 0.5 \times 0.99 \times 0.5 \times 0.99 \times 0.99 = 0.23$$
 "Any poor, all poor"

$$R_{\text{series}} = 0.99 \times 0.99 \times 0.99 \times 0.99 \times 0 \times 0.99 \times 0 \times 0.99 \times 0.99 \times 0.99 = 0$$
 "Any fails, all fails"

The Story in Human Error Rate Tables

	Read/ reason	Error rate (per to Physical operation	ask) Everyday yardstick		
Simplest possible task Fail to respond to annunciator	0.0001	~5 sigma			
Overfill bath Fail to isolate supply (electrical work) Read single alphanumeric wrongly Read 5-letter word with good resolution wrongly Select wrong switch (with mimic diagram) Fail to notice major cross-roads	0.0002 0.0003	0.0001	0.00001		
Routine simple task Read a checklist or digital display wrongly Set switch (multiposition) wrongly Calibrate dial by potentiometer wrongly	0.001	0.001			
Check for wrong indicator in an array Wrongly carry out visual inspection for a defined criterion (e.g. leak)	0.003	~4.5 s	igma		
Fail to correctly replace PCB Select wrong switch among similar	0.003	0.004 0.005			

Source: Smith, David J., 'Reliability, Maintainability and Risk', Appendix 6, Seventh Edition, Elsevier – Butterworth Heinemann

	Error rate (per task)			
	Read/ reason	Physical operation	Everyday yardstick	
Read analogue indicator wrongly	0.005			
Read 10-digit number wrongly	0.006		2000	
Leave light on	1.	siama	0.003	
Routine task with care needed	~4 3	sigma		
Mate a connector wrongly		0.01		
Fail to reset valve after some related task		0.01		
Record information or read graph wrongly	0.01			
Let milk boil over			0.01	
Type or punch character wrongly		0.01		
Do simple arithmetic wrongly	0.01-0.03		0.00	
Wrong selection - vending machine		0.00	0.02	
Wrongly replace a detailed part	0.02	0.02		
Do simple algebra wrongly	0.02			
Read 5-letter word with poor resolution wrongly Put 10 digits into calculator wrongly	0.05			
Dial 10 digits into calculator wrongly	0.05			
Diar to digits wrongly	0.00			
Complicated non-routine task				
Fail to notice adverse indicator when reaching	Head			
for wrong switch or item	0.1			
Fail to recognize incorrect status in roving				
inspection	0.1			
New workshift - fail to check hardware, unless	0.1	2 - 3 sig	ıma	
specified General (high stress)	0.25		Jilla	
Fail to notice wrong position of valves	0.5			
Fail to act correctly after 1 min in emergency	0.0			
situation	0.9			
DALLESSA VII	4.4			

In failure rate terms the incident rate in a plant is likely to be in the range of 20×10^{-6} per h (general human error) to 1×10^{-6} per h (safety-related incident).

The Table confirms that 'human element' error is real and <u>unavoidable</u>. We do not perform well when tasks are structured in ways that require care and we perform especially badly under complicated non-routine conditions. Add stress into that that mix and you get disaster.

Your work processes are a series of tasks

What is the chance that the whole job will done right?

Risks to work quality and machine reliability

Task Reliability is the chance that a task will be performed to its required quality.

Controlling human error is the greatest challenge to reliability

Lifetime Reliability • Solutions

But where do your failures start?

Your problems start with chance variation...

What chance variation does to machines

High Vibration:

Fastener Torque Error:

Deformation:

Extract from 'Shaft Alignment Handbook ',Piotrowski

Misalignment:

IR Image Before Alignment

Unclean Lubricant:

Unbalance:

Cause and effect of your equipment failures

Most Business make their Machines Break

This is a statistically stable process of breakdown creation – this business makes breakdowns as one of its 'products'.

Understanding what it means to be 'in control and capable'

Carpenter's creed: 'measure twice, cut once'

Lifetime Reliability Solutions

The power of parallel proof-tests

Original task reliability

Proof-test reliability

Equivalent series reliability

0.995

0.59

0.95

Remove the variability from your business processes

- unless you want to run your business by luck!

In the end... reliability is a quality control issue.

The secret is to control variability to within the limits that bring benefits

Right Work = Right Results

Procedures and Training control accuracy of Task Performance. Focus on the content and quality of procedures and training.

Journey to 6 Sigma: Minimize Variability

The Processes and World-Class Skills of Precision

- 1. Accurate Fits and Tolerance ISO/ANSI Shaft/Hole Tolerance Tables
- 2. Clean, Contaminant-Free Lubricant ISO 4406
- 3. Distortion-Free Equipment Shaft Alignment Handbook Piotrowski
- 4. Forces and Loads into Supports Shaft Alignment Handbook
- 5. Accurate Alignment of Shafts Shaft Alignment Handbook
- 6. High Quality Balancing of Rotating Parts ISO 1940
- 7. Machine Vibration ISO 10816
- 8. Correct Torques and Tensions ISO/ASME Bolt, Stud and Nut Standards
- 9. Correct Tools in Condition 'As-New Specification'
- 10. Only In-specification Parts OEM specifications, Machinery Handbook
- 11. Failure Cause Removal '5 Why'; RCFA; Reliability Growth Cause Analysis
- 12. Proof of Precision Measurements, Condition Monitoring at Start-up
- 13.A system to use the standards successfully ACE 3T Procedures, ISO9001

Set work task standards to deliver the quality that produces the reliability you want

How do we apply it to our machines?

Electric motor drive end bearing

USS Nimitz - Some keys to their success

Preoccupation with Failure

Reluctance to Simplify Problems

- Highlight, Analyse & Learn from failures and problems
- There is healthy challenge to constantly improve
- Turnover of people helps stop operations becoming stale
- Seeks deeper understanding of problem causes
 Sensitive to the smallest whisper of things going wrong

Deference to Expertise

- Expertise overrides rank. Decision-making pushed down
 - When things go wrong, turn to experts to help resolve
- Team communication is far in excess of the norm

Control Your Processes by Converting your SOPs to 3T Accuracy Controlled Procedures

			7					olerano		
Task Step No.	Task Step Owner	Task Step Name	Full Description of Task	Test for orrectness	Tolerance Range		Record Actual Result	Action if Out of Tolerance	Sign-off After Complete	
		(Max 3 – 4 words)	(Include all tables, diagrams and pictures here)	7	Good	Better	Best	Target	,	
			Continual improve	ement				yet /		

- Specify the 3Ts (Target, Tolerance, Test) for task precision and accuracy
- Describe in a measurable fashion what 'good', 'better' and 'best' are to challenge people to strive for excellence
- Advise what to do when out of tolerance i.e. when not 'it's good enough'
- Get a signature when 3T done to tolerance so people are committed to precision
- Drive continual improvement by regularly introducing an even more precise 'best'

Use condition monitoring as the proof test for task quality

Life Extension Zone Failure Elimination Zone

Equipment reliability is malleable by choice of policy and quality of practice

High equipment reliability is...

1 - Valuable... more time; more throughput; no losses 6 - Provable by 2 - Parts based... its precision... low stress, low Measure; fatigue, low Condition contamination Monitor High **Equipment** Reliability 5 – Reliant on 3 - Malleable... meeting by the risks you world-class allow your parts quality standards to carry 4 - Dependent on stopping Variability **Lifetime Reliability • Solutions**