Total Control Over Human Error

 A Reliability Model
ICOMS 2008 Conference

Mike Sondalini

Lifetime Reliability Solutions
www.lifetime-reliability.com

Each Process is Part of a Series of Processes

All business processes involve a series of work processes

The Process Chains the Bind Us

Hundreds of activities across dozens of processes - what chance have you got?

Work Process Reliability

How well a job is done is a simple matter of chance

What is the Chance of Good Work

No	Situation and Task	Error Rate (per task)	Reliability Rate
1	Routine simple tasks Read checklist or digital display wrongly	0.001	0.999
2	Check for wrong indicator in an array	0.003	0.997
3	Fail to correctly replace printed circuit board (PCB)	0.004	0.996
4	Wrongly carry out visual inspection for a defined criterion (e.g. leak)	0.003	0.997
5	Select wrong switch among similar	0.005	0.995
6	Read 10-digit number wrongly	0.006	0.994
7	Routine task with care needed Wrongly replace a detailed part	0.02	0.98
8	Put 10 digits into a calculator wrongly	0.05	0.95
9	Do simple arithmetic wrong	0.01-0.03	0.99-0.97
10	Read 5-letter word with poor resolution wrongly	0.03	0.97
11	Dial 10 digits wrongly	0.06	0.94
12	Punch or type character wrongly	0.01	0.99
13	Complicated, non-routine task Fail to notice incorrect status in roving inspection	0.1	0.9
14	New work shift - fail to check hardware, unless specified	0.1	0.9
15	High stress, non-routine work	0.25	0.75
16	Fail to notice wrong position of valves	0.5	0.5
17	Fail to act correctly after 1 minute in emergency situation	0.9	0.1

The Chance of Doing a Good Job

$$
\begin{equation*}
\underline{R}_{i o b}=\underline{R}_{1} \times \underline{R}_{2} \times \underline{R}_{3} \times \underline{\mathbf{R}}_{4} \times \underline{R}_{5} \tag{Eq. 1}
\end{equation*}
$$

Rjob $=1 \times 1 \times 0.6 \times 1 \times 1=0.6$ (or 60\%)
$\underline{\text { Rjob }}=0.9 \times 0.9 \times 0.9 \times 0.9 \times 0.9=0.59$ (or 59%)
‘One poor, all poor’
$\underline{\text { Rjob }}=0.75 \times 0.75 \times 0.75 \times 0.75 \times 0.75=0.237$ (or 24\%) Maintenance with stress

It is human error permitted by bad work process design that makes our series arranged processes so unreliable.

The Work Environment
$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 12$
$\begin{array}{llllllllllll}R_{1} & R_{2} & R_{3} & R_{4} & R_{5} & R_{6} & R_{7} & R_{8} & R_{9} & R_{10} & R_{11} & R_{12}\end{array}$

What is the chance of all 12 tasks being done 100\% perfectly? What if there were 50 tasks in a job?

A Parallel Arrangement

Fortunately reliability principles also give us the answer to the problems with series processes - the parallel process

$$
R_{\text {para }}=1-\left[\left(1-R_{1}\right) \times\left(1-R_{2}\right) \times \ldots\left(1-R_{n}\right)\right]
$$

Eq. 2

$$
\begin{aligned}
R_{\text {para }} & =1-[(1-0.6) \times(1-0.6) \times(1-0.6) \times(1-0.6)] \\
& =1-[(0.4) \times(0.4) \times(0.4) \times(0.4)]=1-[0.0256] \\
& =0.9744(\text { i.e. } 97.4 \%)
\end{aligned}
$$

Parallel four poor chances and your odds improve, because not all go wrong at the same time

- Can each task be made more certain? ... How certain?
- Can we include redundancy and turn tasks into a parallel arrangement? ...

Parallel Tasks

Parallel Process Reliability

Parallel System

$$
\begin{aligned}
& R_{\text {system }}=1-\left[\left(1-R_{1}\right) \times\left(1-R_{2}\right) \times\left(1-R_{3}\right) \ldots\right] \\
& 1-[(1-0.9) \times(1-0.9)] \\
& 1-[0.1 \times 0.1] \\
& 1-[0.01]=0.99
\end{aligned}
$$

Series System
$\begin{aligned} R_{\text {system }}= & R_{1} \times R_{2} \times R_{3} \ldots \\ & 0.99 \times 0.99 \times \ldots 0.99 \\ & (0.99)^{12}=0.8864\end{aligned}$
If 50 tasks $(0.99)^{50}=0.6$

Without Parallel Test

$$
\begin{aligned}
& R_{\text {system }}= R_{1} \times R_{2} \times R_{3} \ldots \\
& 0.9 \times 0.9 \times \ldots 0.9 \\
&(0.9)^{12}=0.2824
\end{aligned}
$$

If 50 tasks $(0.9)^{50}=0.0052$

We need 0.9999

0.999 is not enough

12 task series process:
$\mathbf{R}_{\text {system }}=\mathbf{R}_{1} \times \mathbf{R}_{2} \times \mathbf{R}_{3} \ldots$.
$0.9999 \times 0.9999 \times . .0 .9999$ (0.9999) ${ }^{12}$
0.9988 (1 error in 1000 tasks $-\sim 4.50$)

50 task series process:
$\begin{aligned} \mathbf{R}_{\text {system }}= & \mathbf{R}_{1} \times \mathbf{R}_{2} \times \mathbf{R}_{3} \ldots \ldots \\ & 0.9999 \times 0.9999 \times \ldots 0.9999 \\ & (0.9999)^{50} \\ & 0.995(5 \text { errors in } 1000 \text { tasks }-\sim 4 \sigma)\end{aligned}$

12 task series process:

$$
\begin{aligned}
\mathbf{R}_{\text {system }}= & \mathbf{R}_{1} \times \mathbf{R}_{2} \times \mathbf{R}_{3} \ldots . \\
& 0.999 \times 0.999 \times \ldots 0.999 \\
& (0.999)^{12} \\
& 0.9881(\sim 1 \text { error in } 100 \text { tasks }-\sim 3.5 \sigma)
\end{aligned}
$$

50 task series process:

$$
\begin{aligned}
\mathbf{R}_{\text {system }}= & \mathbf{R}_{1} \times \mathbf{R}_{2} \times \mathbf{R}_{3} \ldots \\
& 0.999 \times 0.999 \times \ldots 0.999 \\
& (0.999)^{50} \\
& 0.95(5 \text { errors in } 100 \text { tasks }-\sim 3 \sigma)
\end{aligned}
$$

How do we get maintenance tasks to be 0.9999 reliable, when...

... they don't make 0.99 reliable peoples?

Something else is interesting with parallel tasks

Parallel Systems

$$
\begin{aligned}
R_{\text {system }}= & 1-\left[\left(1-R_{1}\right) \times\left(1-R_{2}\right)\right] \\
& 1-[(1-1) \times(1-0.5)] \\
& 1-[0 \times 0.5] \\
& 1-[0]=1
\end{aligned}
$$

As long as one parallel task is done right ... the whole step is right -100% right.

The J.A.L. Job

$$
\begin{aligned}
\underline{R}_{\text {task }} & =1-[(1-0.9) \times(1-0.9) \times(1-0.9) \times(1-0.99)] \\
& =1-[(0.1) \times(0.1) \times(0.1) \times(0.01)] \\
& =0.99999 \text { (i.e. } 99.999 \%, \text { or } 1 \text { error per } 100,000 \text { opportunities })
\end{aligned}
$$

$\underline{R}_{\text {job }}=0.99999 \times 0.99999 \times 0.99999 \times 0.99999 \times 0.99999=0.99995$ (i.e. 99.995%) The error rate for the whole job is now 5 errors per 100,000 opportunities.

How well a job is done is a simple matter of controlling chance

But the best answer is to failure proof the job design ...

Failure-Proofed Series Systems

$$
\begin{aligned}
R_{\text {system }}= & R_{1} \times R_{2} \times R_{3} \ldots \\
& 1 \times 1 \times \ldots 1 \\
& (1)^{12}=1 \\
& (1)^{50}=1
\end{aligned}
$$

... and get each task 100\% right - always perfect!

