

Phone: Fax: Email: Website:

+61 (0) 402 731 563 +61 8 9457 8642 info@lifetime-reliability.com www.lifetime-reliability.com

Reliability Growth Plot using MS Excel Guidebook

CONTENTS

Introduction	2
Example on Pre-printed 1:1 Graph Paper	3
Creating the Graph in MS Excel	
Converting Linear Axes to Log-Log Axes	8
Show the Trend Lines for Each Phase of Life	13
Calculating the Beta Values.	17

Fax: Email: Website: +61 (0) 402 731 563 +61 8 9457 8642 info@lifetime-reliability.com www.lifetime-reliability.com

Reliability Growth Plotting Guide using MS Excel

Introduction

This guide shows you a way to use Microsoft Excel to plot repairable equipment failure history and identify if its reliability trends are unchanged, worsening or improving.

Reliability Growth Plot 10 10 100 Cumulative Days Between Failures

Figure 1 - Log-Log Plot of Equipment Reliability Growth

A way to see reliability growth is by plotting the observed number of cumulative failures against cumulative time on logarithmic paper. Such a diagram is known as a Crow-AMSAA reliability growth plot, which is similar to the Duane Plot method, and applies for a piece of repairable equipment, a complete production process and even to an organisation. The development of log-log reliability growth plots can be traced back to the 1930's investigations of the learning curve for building airplanes¹. It was developed into a graphical method in the 1960's by James Duane while working at General Electric for use in predicting improvements in mean-time-between-failures of new product developments. In the 1970's a mathematical derivation was developed by Larry Crow while in the employ of US Army Material Systems Analysis Activity (AMSAA). The measurement of reliability growth by Crow-AMSAA plot reflects changes in system reliability caused by changed efforts to affect reliability.

The method is now used in industry as a historic reliability key performance indicator as well as a means to predict the future impact of reliability improvement initiatives. The technique is purely empirical, but has been a very good approximation when applied to complete machines suffering multiple failure modes². Crow-AMSAA plots are power laws and seem to imply a relationship between the failure of equipment and the risks it carries. Crow-AMSAA plots start by creating a table like Table 1, which in this case lists the failure dates for a repairable plant item and the cumulative days between failures. The data is used to create a computerised log-log plot, like that

¹ Comerford, Nigel., 'Crow/AMSAA Reliability Growth Plots and there use in Interpreting Meridian Energy Ltd's, Main Unit Failure Data', Areva T&D, New Zealand, 2005

² Sherwin, David,. Retired Professor of Maintenance and Reliability, 'Introduction to the Methods of Reliability Engineering with particular emphasis to Engineering Asset Management and Maintenance' presentation, 2007

in Figure 1, or in 1:1 scale on a sheet of log-log paper, like Figure 2, draw a graph of the cumulative days verses the cumulative failures.

Failure No	Failure Date	Cumulative Time in Days	Comments
0	January 25 th		New equipment installed
1	March 1 st	35	
2	April 9 th	75	
3	May 9 th	105	New material selected
4	June 30 th	155	
5	August 21st	205	
6	October 5 th	245	
7	November 26 th	295	Precision Maintenance introduced
8	July 1 st	495	
9	March 26 th	745	

Table 1 – Reliability Growth Cumulative Days

Example on Pre-printed 1:1 Graph Paper

Figure 2 – 1:1 Scale Log-Log Paper Plot of Equipment Reliability

Notice the triangles drawn on Figure 2 have the same slope as the lines. Because the graphical loglog plot is 1:1 (must be a 1:1 scale), you can measure the X and Y lengths with a ruler and calculate the slopes. The slopes tell a lot about what is happening with the equipment. The slope is called the Beta Value - ' β ' (not to be confused with the beta used in Weibull Analysis; the two have very different meanings). The Beta is a reliability trend indicator.

- Beta < 1, Reliability Improving
- Beta ~ 1, Reliability Static
- Beta > 1, Reliability Deteriorating

In Figure 2, you can see that the beta for the early failures was indicating a steady reliability trend. After the material change, the reliability was better. And with the introduction of precision maintenance, the reliability trend improved massively.

Software for Crow-AMSAA investigation and reliability improvement analysis is commercially available and provides useful management indicators when sufficient data points are available. A simple Crow-AMSAA plot, as in Figure 3, can be developed using MS Excel.

Figure 3 – Excel Log-Log Plot of Equipment Reliability

The historic failure data is entered into a spreadsheet table with X-axis data to the left of the Y-axis data. (Excel plots left-hand column data as the X-axis in the horizontal and the right-hand column on the Y-axis. You can change the axes later by swapping X and Y data using the 'Select data...' function and changing the choice for the series on each axis.)

Creating the Graph in MS Excel

4	A B	С	D	Е	F	G
1			X Axis	Y Axis		
2	Failure Date	Days In- Between Failures	Cumulative Days	Failure No	Comments	
3	25-January-2006	0	0	0	New equipment installed	
4	01-March-2006	35	35	1		
5	09-April-2006	39	74	2		
6	09-May-2006	30	104	3	New material selected	
7	30-June-2006	52	156	4		
8	21-August-2006	52	208	5		
9	05-October-2006	45	253	6		
10	26-November-2006	52	305	7	Precision Maintenance introduced	
11	01-July-2007	217	522	8		
12	01-March-2008	244	766	9		
13						
14						